Positive Solutions of Semilinear Elliptic Equation Δu + hu(n+2)/(n−2) = 0

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence and nonexistence of positive solutions of semilinear elliptic equation with inhomogeneous strong Allee effect

In this paper, we study a semilinear elliptic equation defined on a bounded smooth domain. This type of problem arises from the study of spatial ecology model, and the growth function in the equation has a strong Allee effect and is inhomogeneous. We use variational methods to prove that the equation has at least two positive solutions for a large parameter if it satisfies some appropriate cond...

متن کامل

Separation property of solutions for a semilinear elliptic equation

In this paper, we study the following elliptic problem   ∆u+K(x)u p = 0 in R u > 0 in R (∗) where K(x) is a given function in Cα(R \ 0) for some fixed α ∈ (0, 1), p > 1 is a constant. Some existence, monotonicity and asymptotic expansion at infinity of solutions of (∗) are discussed. ∗Research supported in part by the Natural Science Foundation of China and NSFC †Research supported in part b...

متن کامل

Existence of Positive Bounded Solutions of Semilinear Elliptic Problems

Correspondence should be addressed to Faten Toumi, [email protected] Received 18 June 2010; Accepted 25 September 2010 Academic Editor: A. Mikelic Copyright q 2010 Faten Toumi. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Thi...

متن کامل

Multiplicity of Positive Solutions for Semilinear Elliptic Systems

and Applied Analysis 3 Let Kλ,μ : E → R be the functional defined by Kλ,μ (z) = ∫ Ω (λf (x) |u| q + μg (x) |V| q ) dx ∀z = (u, V) ∈ E. (11) We know that Iλ,μ is not bounded below on E. From the following lemma, we have that Iλ,μ is bounded from below on the Nehari manifoldNλ,μ defined in (9). Lemma 3. The energy functional Iλ,μ is coercive and bounded below onNλ,μ. Proof. If z = (u, V) ∈ Nλ,μ, ...

متن کامل

Minimal positive solutions for systems of semilinear elliptic equations

The paper is devoted to a system of semilinear PDEs containing gradient terms. Applying the approach based on Sattinger’s iteration procedure we use sub and supersolutions methods to prove the existence of positive solutions with minimal growth. These results can be applied for both sublinear and superlinear problems.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Differential Equations

سال: 1995

ISSN: 0022-0396

DOI: 10.1006/jdeq.1995.1164